On bilinear algorithms for multiplication in quaternion algebras

نویسنده

  • Vladimir Lysikov
چکیده

We show that the bilinear complexity of multiplication in a non-split quaternion algebra over a field of characteristic distinct from 2 is 8. This question is motivated by the problem of characterising algebras of almost minimal rank studied in [1] This paper is a translation of a report submitted by the author to the XI international seminar ”Discrete mathematics and its applications”. Definition 1. A sequence (f1, g1, z1; . . . ; fr, gr, zr) with fk ∈ U , gk ∈ V , zk ∈ W is called a bilinear algorithm of length r for a bilinear mapping φ : U × V → W if

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Structured Matrix Computations: Tensor Rank and Cohn-Umans Method

We discuss a generalization of the Cohn–Umans method, a potent technique developed for studying the bilinear complexity of matrix multiplication by embedding matrices into an appropriate group algebra. We investigate how the Cohn–Umans method may be used for bilinear operations other than matrix multiplication, with algebras other than group algebras, and we relate it to Strassen’s tensor rank ...

متن کامل

Bounds for Bilinear Complexity of Noncommutative Group Algebras

We study the complexity of multiplication in noncommutative group algebras which is closely related to the complexity of matrix multiplication. We characterize such semisimple group algebras of the minimal bilinear complexity and show nontrivial lower bounds for the rest of the group algebras. These lower bounds are built on the top of Bläser’s results for semisimple algebras and algebras with ...

متن کامل

On Totally Decomposable Algebras with Involution in Characteristic Two

A necessary and sufficient condition for a central simple algebra with involution over a field of characteristic two to be decomposable as a tensor product of quaternion algebras with involution, in terms of its Frobenius subalgebras, is given. It is also proved that a bilinear Pfister form, recently introduced by A. Dolphin, can classify totally decomposable central simple algebras of orthogon...

متن کامل

Arens regularity of triangular Banach algebras related to homomorphisms

In this paper we first introduce a new multiplication on triangular Banach algebras. Then we study their Arens regularity as well as their topological centers . In this paper we first introduce a new multiplication on triangular Banach algebras. Then we study their Arens regularity as well as their topological centers . In this paper we first introduce a new multiplication on triangular Banach ...

متن کامل

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1206.5501  شماره 

صفحات  -

تاریخ انتشار 2012